A biological Bayesian network for prediction of adverse outcome in a population of acutely ill patients triaged in the Emergency Department

Barford C, Lundstrøm LH, Lange KH and Barford K
Department of Anaesthesia and Department of Emergency Medicine, Nordsjællands Hospital, Denmark

Conclusion
By using already existing data, we were able to build a Bayesian network, which can be used to estimate the risk of adverse outcome and serve as a decision support system in assessing future patients admitted acutely to hospital.

Background
Increasing age, abnormal vital signs and abnormal acid-base status are strongly associated with in-hospital mortality in unselected patients admitted acutely to hospital. Therefore, a model including this information will make us able to predict the risk for future patients.

Our aim was to describe a Bayesian model for prediction of adverse outcome in the acute ill adult patient admitted to hospital, based on already existing data from the ‘Acute Admission Database’.

Results
We tested the path of an acutely ill patient: A 72 years old male patient, presenting with vomiting blood ($T_{\text{vomiting blood}}$ = yellow).

By using this evidence in the nodes of relevance, we could assess the most probable distribution of the other nodes, including the outcome of interest.

We simulated that more data became available for instance vital signs (systolic blood pressure at 85 mmHg, resulting in T_{blood} = orange).

Finally, we entered the results of a venous blood gas (pH 7.32 and lactate 2.7 mmol/l). The probability distribution of the outcome measures changed as more evidence was gained.

In this case, the estimated risk of inhospital mortality was 6.22% and the risk of ICU admission was 11.3%.

Methods
The model is a static Bayesian network, i.e. a stochastic model where all interdependence is described by conditional probabilities. The net consists of nodes representing variables and pointed arrows of influence. The probabilities connected to the nodes and arrows are conditional probabilities showing how the state of a variable influences the probability distribution for the states of another variable.

We based the model on already existing data from the ‘Acute Admission Database’ and imported data from 6279 patients consecutively admitted to Hillerød Hospital through the Emergency Department into the Bayesian net program, Netica “3.7” © Norsys Software Corp. We included the risk factors identified in this cohort in previous studies as nodes and represented the known associations with directed arrows.